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Abstract. A Hubbard model with aNd-fold degenerate single-particle ground state has
ferromagnetic ground states if the number of electrons is less than or equal toNd. It is shown
rigorously that the local stability of ferromagnetism in such a model implies global stability: the
model has only ferromagnetic ground states, if there are no single spin–flip ground states. If the
number of electrons is equal toNd, it is well known that the ferromagnetic ground state is unique if
and only if the single-particle density matrix is irreducible. We present a simplified proof for this
result.

1. Introduction

The problem of ferromagnetism in itinerant electron systems has a long history. It is clear
that ferromagnetism (as for any other ordering in itinerant electron systems) occurs due to the
interaction of the electrons, or, to be more precise, due to a subtle interplay between the kinetic
motion of the electrons and the interaction. In 1963, Hubbard [1], Kanamori [2] and Gutzwiller
[3] formulated and studied a simple tight-binding model of electrons with an on-site Coulomb
repulsion of strengthU . This model is usually called the Hubbard model. Although the
assumption, that a realistic system can be described by a purely local repulsion of the electrons
is artificial, the Hubbard model became a paradigm for the study of correlated electron systems.
The reason is that already a pure on-site interaction can produce many ordering effects that
have been observed in electronic systems. The mechanisms that are responsible for some
long-range order in the ground state of the Hubbard model are probably also responsible for
long-range order in more complicated (and more realistic) models. From a theoretical point of
view the Hubbard model is very interesting, because it offers the possibility to derive ordering
phenomena in a simple model that does not contain special interactions favouring this order.

In this paper we present a result on ferromagnetism in the Hubbard model. This is
an old problem, which has been studied extensively using various approximative methods.
The simplest approach is the Hartree–Fock approximation. It yields the Stoner criterion
UρF > 1 for the occurrence of ferromagnetism in the Hubbard model.ρF is the density of
states at the Fermi energy. It is well known that this criterion overestimates the occurrence of
ferromagnetism. There are situations whereρFU is infinite and the ground state of the Hubbard
model is not ferromagnetic. Ferromagnetism is not a universal property of the Hubbard model.
As far as we know it occurs on special lattices and in special regions of the parameter space.
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In the discussion of ferromagnetism in correlated electron systems, more realistic models
with, for example, an additional ferromagnetic interaction between the electrons [4] or a
Hund’s coupling between several bands in a multi-band system [5] have also been discussed.
It is clear that in a realistic description of itinerant ferromagnetism such additional interactions
are present and may favour the occurrence of ferromagnetism. However, it is a challenging
problem to derive conditions for the occurrence of ferromagnetism in a Hubbard model, which
does not explicitly contain such interactions. The hope is that results for this model will yield
an important contribution to the understanding of ferromagnetism in more realistic models.

The first rigorous results on ferromagnetism in the Hubbard model is the so-called theorem
of Nagaoka [6]. On a large class of lattices, the Hubbard model has a ferromagnetic ground
state if the Coulomb repulsion is infinite and if there is one electron less than lattice sites. A
very general proof of this theorem has been given by Tasaki [7].

A second class of systems, for which the existence of ferromagnetic ground states has been
shown rigorously, are the so-called flat-band models. In 1989, Lieb [8] proved an important
theorem on the Hubbard model: at half filling and on a bipartite lattice (one electron per lattice
site) the ground state of the Hubbard model is unique up to the usual spin degeneracy. The spin
of the ground state is given byS = 1

2||A| − |B||, where|A| and|B| are the numbers of lattice
sites of the two sublattices of the bipartite lattice. When this quantity is extensive, the system
is ferromagnetic. In that case, the model has strongly degenerate single-particle eigenstates at
the Fermi level,ρF is infinite. For a Hubbard model on a translationally invariant lattice such
a model has several bands, one of which is flat. Later, it was shown that a multiband Hubbard
model for which the lowest band is flat shows ferromagnetism [9–14]. These lattices are
not bipartite, generally they contain triangles or next-nearest-neighbour hoppings. A typical
example is the Hubbard model on the kagomé lattice [11].

There are several extensions of the flat-band ferromagnetism. The most important result
has been derived by Tasaki [15]. He discussed the question of whether the flat-band ferromagnet
is stable with respect to small perturbations. He showed under very general assumptions that
for a class of multi-band Hubbard models with a nearly flat lowest band the ferromagnetic
state is stable with respect to single spin–flips if the Coulomb repulsionU is sufficiently large
and if the nearly flat band is half filled. This local stability of the ferromagnetic state suggests
its global stability. The class of models, for which Tasaki was able to prove this important
result consists of models, for which the nearly flat, lowest band is separated from the rest of the
spectrum by a sufficiently large gap. Therefore, one would expect that these models describe
an insulating ferromagnet. This a general problem for the flat-band ferromagnetism as well.
The flat-band models show ferromagnetism if the flat band is half filled or less than half filled.
Even if the flat band is less than half filled, or if the model has no gap between the flat band
the other bands (this is the case for the kagomé lattice), the system may be an insulator. The
reason is that for an entire flat band, the system can be described by localized states as well.
Furthermore, the existence of a basis of localized states was an essential part of the proofs.

Another extension of the flat-band ferromagnetism are models with a partially flat band.
In [13] a general necessary and sufficient condition for the uniqueness of ferromagnetic ground
states has been derived for a model with a degenerate single-particle ground state. This result
holds only if the number of electrons is equal to the number of degenerate single-particle ground
states. However, it does not require a gap in the spectrum or an entirely flat band. A partially flat
band is sufficient. A Hubbard model with a single band far away from half filling is expected
to be a conductor. This remains true if the band is partially flat. Therefore, these models may
describe a metallic ferromagnet. A generalization of this result to a situation where the number
of electrons is less than the number of single-particle states has recently been published [16].
The main result of that letter is that in a single-band Hubbard model with a degenerate single



Stability of ferromagnetism in Hubbard models 8413

partial ground state local stability of ferromagnetism implies global stability, if the number
of electrons is less than or equal to the number of degenerate single-particle ground states.
Stability is meant here in the sense of absolute stability: the ferromagnetic ground state is the
only ground state of the system.

That local stability of ferromagnetism implies global stability has often been assumed
but is by no means guaranteed. It would be certainly useful to know, in which situations this
is the case. The aim of the present paper is to generalize the result into a general Hubbard
model with degenerate single-particle ground states. It is not necessary to have a single-band
model. It is even not necessary to have translational invariance, although this would be a
natural assumption.

Let us mention that Hubbard models with a partially flat band are not only an academic
toy model. Very recently Aritaet al [17] used such a model to explain the negative
magnetoresistance of certain organic conductors. They mention that standard band-structure
calculations for these materials yield a partially flat band.

This paper is organized as follows. The next section contains the main definitions and
results. The proof of the result combines the ingredients of the proofs in [13] and [16]. The
main part of the proof is the choice of a suitable basis. This choice is discussed in section 3.
Section 4 contains a new proof of the result in [13]. The proof in [13] used an induction in
the number of degenerate single-particle states and was not intuitive at all. On the other hand,
the basic idea as to why the condition in [13] should be true is simple. The new proof is
based on this basic idea and is much easier. Furthermore, it can be generalized to situations
where the number of electrons is less than the number of degenerate single-particle states. This
generalization is presented in section 5.

2. Main result

We consider a Hubbard model on a finite lattice withNs sites. The Hamiltonian is

H = Hhop +Hint (1)

where

Hhop=
∑
x,y,σ

txyc
†
xσ cyσ (2)

and

Hint =
∑
x

Uxnx↑nx↓ (3)

wherex andy are lattice sites. As usualc†
xσ andcxσ are the creation and the annihilation

operators of an electron on sitex with spin σ = ↑,↓. They satisfy the anticommutation
relations

[
cxσ , c

†
yτ

]
+ = δxyδστ , and [cxσ , cyτ ]+ =

[
c†
xσ , c

†
yτ

]
+ = 0. The number operator

is defined asnxσ = c†
xσ cxσ . The hopping matrixT = (txy) is real symmetric and the on-

site Coulomb repulsionUx is positive. We do not need to assume any kind of translational
symmetry, therefore the lattice is simply a collection of sites. We allow the local Coulomb
repulsion to depend onx. The total number of electrons isNe =

∑
x∈3(nx↑ + nx↓).

The Hubbard model has anSU(2) spin symmetry, it commutes with the spin operators

ES =
∑
x

∑
σ,τ=↑,↓

c†
xσ ( Ep)στ cxτ /2 (4)
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where Ep is the vector of Pauli matrices,

p1 =
(

0 1
1 0

)
p2 =

(
0 −i
i 0

)
p3 =

(
1 0
0 −1

)
. (5)

We denote byS(S + 1) the eigenvalue ofES2.
The eigenstates of the hopping matrixT areϕi , the corresponding eigenvalues areεi ,

i = 1, . . . , Ns. Let εi 6 εj for i < j . In the following we will discuss a Hubbard model with
Nd degenerate single-particle ground states. The energy scale is chosen such thatεi = 0 for
i 6 Nd.

The main result of the present paper can now be formulated.

Theorem. In a Hubbard model withNd degenerate single-particle ground states andNe 6 Nd

electrons, local stability of ferromagnetism implies global stability: the model has only
ferromagnetic ground states with a spinS = 1

2Ne, if and only if there are no single spin–
flip ground states (ground states with a spinS = 1

2Ne− 1).

This theorem is true for any positive Coulomb repulsionUx . The existence of ferromagnetic
ground states is indeed trivial. Any multi-particle state that contains only electrons with spin
up in single-particle statesϕi , i 6 Nd is a ground state of the Hamiltonian. It is even a ground
state of the kinetic part and of the interaction part of the Hamiltonian separately. The problem
is to show that there are no further ground states. The above theorem yields a necessary and
sufficient condition for the existence of non-ferromagnetic ground states.

As already mentioned in [13], one can use degenerate perturbation theory to generalize
the result to a situation where the flat part of the band does not lie at the bottom of the single-
particle spectrum. A concrete model, where such a situation occurs, has been investigated by
Arita et al [18]. They investigated a special type of one-dimensional Hubbard model used for
the description of atomic quantum wires. These models have a flat band that is not situated at
the bottom of the spectrum.

3. Choice of the basis

The main part of the proof of the theorem is the choice of an appropriate basis. It turns out that
the choice of the single-particle basis used in [13] is useful. In this section we give a detailed
construction of such a basis. The starting point is the representation

T =
(
C†T0C C†T0

T0C T0

)
(6)

of the hopping matrix. HereT0 is a positive(Ns−Nd)×(Ns−Nd)-matrix, rankT0 = Ns−Nd.
C is an (Ns − Nd) × Nd-matrix. This representation ofT can be obtained as follows:
since rankT = Ns − Nd, one can findNs − Nd rows (or columns) ofT which are linear
independent. We label the corresponding sites byx = Nd + 1, . . . , Ns. T0 is the submatrix
(txy)x,y∈{Nd+1,...,Ns}. SinceT is non-negative,T0 is positive. The matrixC is given by(T0)

−1T01

whereT01 = (txy)x∈{Nd+1,...,Ns},y∈{1,...,Nd}. The other matrix elements ofT are fixed, sinceT is
symmetric and since the other rows ofT are linear dependent.

By construction, the single-particle ground states obeyT ψ = 0. This holds if and only if

ψ =
(

ψ̄

−Cψ̄
)
. (7)

A basis of single-particle ground states can be obtained by choosing an arbitrary set ofNd

linear independent vectors̄ψ . We choose the basisB = {ψi : ψ̄i(x) = δx,i}. Sincetxy



Stability of ferromagnetism in Hubbard models 8415

are real,ψi(x) are real. This basis is not orthonormal. The matrixB = (bij )i,j=1,...,Nd with
bij =

∑
x ψi(x) ψj (x) is positive and the dual basis is formed byψd

i (x) =
∑

j (B
−1)ijψj (x).

One has
∑

x ψ
d
i (x) ψj (x) = δi,j . We introduce creation operators for electrons in the state

ψi(x),

a
†
iσ =

∑
x

ψi(x) c
†
x (8)

and the corresponding dual operators

aiσ =
∑
x

ψd
i (x) c

†
x. (9)

They obey the commutation relations [aiσ , a
†
jτ ] = δi,j δσ,τ . These creation and annihilation

operators can now be used to construct multi-particle states. The unique ferromagnetic ground
state withNe = Nd electrons andS = S3 = Nd/2 is

ψ0F =
∏
i

a
†
i↑|0〉. (10)

A general ground state of the kinetic part of the Hamiltonian is given by

ψn,m(α) = Sn,m− (α)ψ0F (11)

where

S
n,m
− (α) =

∑
j1...jm;i1...in

αj1...jm;i1...in
∏
k

a
†
jk↓
∏
k

aik↑. (12)

This state hasNe = Nd−n+m electrons. In the following I assume thatNe 6 Nd, i.e.m 6 n.
ψn,m(α) is a state withS3 = (Nd − n − m)/2 = Ne/2− m. It obeysS+ψ

n,m(α) = 0 if and
only if ∑

k

αk,j1...jm−1;k,i1...in−1 = 0. (13)

In that case it is a state with a spinS = S3. We want to derive a condition forψn,m(α) to be a
ground state of the Hamiltonian. A necessary and sufficient condition is

cx↑cx↓ψn,m(α) = 0 (14)

for all x. Forx 6 Nd one obtainsai↑ai↓ψn,m(α) = 0. Therefore,αj1...jm;i1...in = 0 if {j1 . . . jm}
is not a subset of{i1 . . . in}. It turns out that this fact is important since it simplifies the proof
substantially.

4. The caseNe = Nd

This case has already been discussed in [13]. In the following we obtain a simplified proof
of the result in [13]. Let us first discuss the stability with respect to single spin–flips. A
ferromagnetic ground state is called stable with respect to a single spin–flip, if there is no
single spin–flip state with the same energy. I derive a necessary and sufficient condition for
ψ0F to be stable with respect to a single spin–flip. A general state with a single spin–flip can
be written in the form

ψ =
∑
j,k

αj ;kc
†
j↓ck↑ψ0F. (15)
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If and only if αj ;k ∝ δj,k, is ψ the unique ferromagnetic ground state withS = Nd/2,
Sz = Nd/2− 1. If and only if

∑
j αj ;j = 0, isψ a state withS = Sz = Nd/2− 1. Therefore,

I assume
∑

j αj ;j = 0. ψ is a ground state if and only ifcx↑cx↓ψ = 0,

cx↑cx↓ψ =
∑
j,k,l

αj ;k ψj (x) ψl(x) cl↑ck↑ψ0F. (16)

The right-hand side vanishes if and only if∑
j

ψj (x)(αj ;k ψl(x)− αj ;l ψk(x)) = 0 ∀ k, l. (17)

I introduce

ψ̃k(x) =
∑
j

αj ;k ψj (x). (18)

The condition forαj,k yields

ψ̃k(x) ψl(x)− ψ̃l(x) ψk(x) = 0 ∀ k, l, x. (19)

A trivial solution is ψ̃k(x) = ψk(x). It corresponds toαj,k ∝ δj,k and has been excluded
above. Multiplying the condition for̃ψk(x) byψd

l (y) ψ
d
k (z) and summing overk andl yields

ρ̃y,xρx,z − ρy,xρ̃x,z = 0 (20)

whereρy,x =
∑

j ψj (x) ψ
d
j (y), ρ̃y,x =

∑
j ψ̃j (x) ψ

d
j (y). If the matrixρx,y is irreducible, the

only solution isρ̃y,x = ρy,x . It corresponds toαj,k ∝ δj,k and has been excluded above. If
the matrixρx,y is reducible, the equation for̃ρy,x has another non-trivial solution. From the
non-trivial solution forρ̃y,x one obtains a solution forαj,k from which one can easily construct
a solution with

∑
j αj,j = 0. Thusψ0F is stable with respect to a single spin–flip if and only if

ρx,y is irreducible. This is the condition derived previously in [13]. To derive this condition,
it was not necessary to use the special single-particle basis introduced in section 3. The use of
this basis is useful for the investigation of multi-spin–flip states.

Let us now consider a multi-spin–flip stateψn,m(α). It is a ground state if and only if∑
P

(−1)P
∑
j1

ψj1(x) ψkP(n+1)αj1...jn;kP(1)...kP (n) = 0. (21)

Sinceαj1...jn;i1...in is antisymmetric in the lastn indices, it is sufficient to sum over all cyclic
permutations.

n+1∑
r=1

(−1)nr
∑
j1

ψj1(x) ψkr (x) αj1...jn;kr+1...kn+1,k1...kr−1 = 0. (22)

Sinceαj1...jn;i1...in 6= 0 only if {j1 . . . jn} = {i1 . . . in}, we obtain forn = 1 (the single spin–flip
case)

ψk(x)ψk′(x)(αk;k − αk′;k′) = 0. (23)

With ψ̃k(x) = αk,k ψk(x) this yields the original condition (19). This means that with this
choice of the basis, the functions̃ψk(x) are either equal toψk(x) or vanish. A solution exists,
if the set{ψk(x), k = 1 . . . Nd} decays in two subsets such thatψk(x)ψk′(x) = 0 if the two
factors are out of different subsets. This is equivalent to the above condition on the single-
particle density matrixρx,y . Forn > 1 we now use the fact that the set{j1, . . . , jn} is a subset
of {k1, . . . , kn+1}. I choosej2 = k1, j3 = k2, etc in (22). With this choice only the terms with
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r > n in the sum overr do not vanish. Forr = n the only non-vanishing contribution in the
sum overj1 is j1 = kn+1. Forr = n + 1 one hasj1 = kn. This finally yields

ψkn(x) ψkn+1(x)(αk1...kn;k1...kn − αkn+1k1...kn−1;kn+1k1...kn−1) = 0. (24)

For some fixedk1, . . . kn−1 I let αk;k = αkk1...kn−1;kk1...kn−1. The indicesk1 . . . kn−1 are chosen
such thatαk;k does not vanish identically, which is possible sinceαj1...jn;i1...in does not vanish
identically. This shows that the existence of a multi-spin–flip ground state implies the existence
of a single spin–flip ground states. Therefore, the ferromagnetic ground state of the Hubbard
model withNe = Nd electrons is the unique ground state (up to the spin degeneracy due to the
SU(2) symmetry) if and only ifρxy is irreducible.

5. The caseNe < Nd

It is now very easy to generalize the second part of the above derivation to the caseNe < Nd.
We will show that the existence of a multi-spin–flip ground state implies the existence of
a single spin–flip ground state. Letψ1,n(α), n > 1 be a single spin–flip ground state for
Ne = Nd − n + 1 electrons. The condition, that this is a ground state, yields

n+1∑
r=1

(−1)nr
∑

j1∈{k1,...kn+1}\{kr }
ψj1(x) ψkr (x) αj1;kr+1...kn+1k1...kr−1 = 0. (25)

The sum overj1 is restricted to the set{k1, . . . kn+1} \ {kr} since otherwiseαj1;kr+1...kn+1k1...kr−1

vanishes. The similar condition for a multi-spin–flip ground stateψm,n+m−1(α) is

n+m∑
r=1

(−1)(n+m−1)r
∑

j1∈{k1,...kn+m}\{kr ,j2...jm}
ψj1(x) ψkr (x) αj1...jm;kr+1...kn+mk1...kr−1 = 0. (26)

I let jr = kn+r , r > 2. Then the sum overr runs from 1 ton + 1 and the sum overj1 runs over
all elements of{k1 . . . kn+1} \ {kr}, all other terms vanish identically. One obtains

n+1∑
r=1

(−1)nr
∑

j1∈{k1,...kn+1}\{kr }
ψj1(x) ψkr (x) αj1kn+2...kn+m;kr+1...kn+1k1...kr−1kn+2...kn+m = 0. (27)

Therefore, we can chooseα̃j1;kr+1...kn+1k1...kr−1 = αj1kn+2...kn+m;kr+1...kn+1k1...kr−1kn+2...kn+m for some fixed
kn+2, . . . kn+m, such thatα̃j1;kr+1...kn+1k1...kr−1does not vanish identically. This is possible since
αj1...jm;k1...kn does not vanish identically. The corresponding single spin–flip stateψ1,n(α̃) is
thus a ground state forNe = Nd − n + 1 electrons.

The proof presented here is considerably simpler than the proof in [13]. Compared to
the proof in [16] it has the advantage that the existence of the single-spin–flip ground state is
trivial, whereas in [16] a lengthy calculation (hidden in footnote 13) was necessary to show
that. On the other hand, for a translationally invariant multi-band system the basis used here
is clearly artificial. However, if one uses a natural basis of Bloch states, it is very hard to
construct the single spin–flip states from multi-spin–flip states.

6. Summary and outlook

In this paper it has been shown that for a general Hubbard model with degenerate single-particle
ground states, local stability of ferromagnetism implies global stability of ferromagnetism. To
be more precise: if there are no single spin–flip ground states, all ground states have the
maximal spin. This result holds if the number of electrons is less than or equal to the number
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of degenerate single-particle ground states. A similar result has been proven for a single-band
Hubbard model in [16] and the present result can be seen as a generalization. It holds for a
Hubbard model with more than one band, it holds even if the model does not have translational
invariance. Furthermore, the proof presented here is much simpler than the proof in [16].

The result is important since in many cases it is much simpler to show local stability
of ferromagnetism than global stability. In [15] it has been shown that under very general
conditions the flat-band ferromagnetism can be extended to situations where the lowest band is
not flat but has a weak dispersion. He was able to prove that in such a situation the ferromagnetic
ground state is locally stable. It would be very interesting to obtain conditions under which in
that case the ferromagnetic ground state is globally stable, i.e. where it is the real ground state
of the system. This is clearly a very difficult project. The present theorem does not apply since
Tasaki’s model does not have degenerate single-particle ground states. However, one may
hope that a generalization is possible. If in a situation with degenerate single-particle ground
states the ferromagnetic ground state is the only one, it is possible that ferromagnetism is stable
with respect to small perturbations of the Hamiltonian. The main problem is clearly that for
a general model there is no gap in the single-particle spectrum as in the models discussed by
Tasaki [15].

From a physics point of view ferromagnetism for models with a partially flat band, as
studied in this paper, differs from the flat-band ferromagnetism, since a flat-band ferromagnet is
typically an insulator, whereas models with a partially flat band describe metals. Therefore, our
new approach is a step towards the understanding of metallic ferromagnetism in the Hubbard
model.
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